goback
月期刊咨询网
当前位置:首页>>教育技术论文>>正文

教育技术论文范文


所属栏目:教育技术论文
发布时间:2014-01-23 15:59:53  更新时间:2014-01-23 15:05:51

已签订领域:化学工程/制药,医学题目:**作为抗癌剂***催化剂**取代苯丙***SCI四区 直击了解更多选题

已签订领域:环境科学-公共卫生题目:用**电***生物传感器**癌症**SCI二区 直击了解更多选题

已签订领域:环境科学-公共卫生题目:**氧化石墨烯纳米***材料的生物传感器***结肠癌生物**癌胚****SCI二区 直击了解更多选题

已签订领域:环境科学-公共卫生题目:聚合物纳米***a-硫辛酸***在神经炎症***应用***临床分析SCI二区 直击了解更多选题

已签订领域:计算机视觉/遥感/智能驾驶/汽车题目:**深度学习***高分辨率遥感***车辆检***SCI三区 直击了解更多选题

已签订领域:企业管理题目:社会交流***领导***倾向***方向SSCI,SCI三区,二区 直击了解更多选题

已签订领域:企业管理题目:**中小企业社交媒体****可持续绩效***因素探析SSCI,SCI三区,二区 直击了解更多选题

已签订领域:环境科学,公共卫生题目:利用硫氨酸***石墨烯纳米***电化学***传感器实现癌胚抗原***SCI二区 直击了解更多选题

已签订领域:环境科学,公共卫生题目:基于抗***纳米复合***高性能***早起癌症诊断***SCI二区 直击了解更多选题

已签订领域:经济,能源题目:***政治冲突****绿色金融、金融**、气***化***SCI四区 直击了解更多选题

已签订领域:经济,能源题目:冲***中能源不安全对***和环境***SCI四区 直击了解更多选题

已签订领域:教育题目:大学生***社交媒体***成绩影响***SSCI三区 直击了解更多选题

已签订领域:教育题目:巴基斯坦***学习实施的***的**SSCI二区 直击了解更多选题

已签订领域:教育题目:大学生对****下网络教学**思***SSCI二区 直击了解更多选题

已签订领域:教育题目:**教师和学生对影响***医疗**效果的****看法SSCI三区 直击了解更多选题

已签订领域:计量经济学题目:**货币、黄金、**和美国***的波动***相互依赖性:**数据的分析SSCI一区 直击了解更多选题

已签订领域:计量经济学题目:东南亚***内**趋同***中等收入**:新**的***SSCI二区 直击了解更多选题

已签订领域:建筑,历史题目:历史景点在***旅游发***中的***影响**(**研究:**历史***)SSCI,SCI一区 直击了解更多选题

已签订领域:领导力,管理题目:量化**领导对角色绩效***响:**冲突与工作自主性***作用SCI二区 直击了解更多选题

已签订领域:信息技术,教育题目:数字***环境对学生学习成绩***:游戏**和***现实在教育***作用SSCI四区 直击了解更多选题

已签订领域:信息技术,教育题目:信息技术***续决策之间的***:创新***识的**作用SSCI二区 直击了解更多选题

已签订领域:信息技术,教育题目:课程**对大学生***发展的影响:学习习惯和***的***作用SSCI一区 直击了解更多选题

已签订领域:信息技术,教育题目:信息技术***与可持续决策**:高等***学生认知***作用SSCI二区 直击了解更多选题

已签订领域:计算机,英语教学题目:英语****学**与人工智能****学习SCI三区 直击了解更多选题

已签订领域:计算机,音乐题目:评价**和音乐**对学生成绩***的影响SCI三区 直击了解更多选题

已签订领域:人体工程,心理学题目:基于预先处理模型***模式人体工程学***女生肌肉骨骼***预防行为*** 直击了解更多选题

已签订领域:人体工程,心理学题目:制定一个***人体工程学**,以识别、优先考虑***职业压力源的*** 直击了解更多选题

已签订领域:人体工程,心理学题目:多重工作**压力和工作***:***工效学方法的混合方法*** 直击了解更多选题

已签订领域:数学,经济题目:数学模型***结构调整和经济转型****研究 直击了解更多选题

已签订领域:数学,经济题目:***时间**数学模型在***媒体营销**中的应用*** 直击了解更多选题

已签订领域:数学,经济题目:***时间**模型在***物流运**能力***研究 直击了解更多选题

已签订领域:数学,经济题目:碳****经济的数学模型****研究 直击了解更多选题

已签订领域:农村经济题目:农****社区**发展***分**SCI四区 直击了解更多选题

已签订领域:农村经济题目:创业***对乡村****发展的****SCI四区 直击了解更多选题

已签订领域:农村经济题目:农村创业****的空间*****究SCI四区 直击了解更多选题

已签订领域:医学,电化学题目:纳米颗粒*****及其在癌症****和重金属*****检测中的应用SCI三区 直击了解更多选题

已签订领域:医学,电化学题目:基于*****前列腺癌药物氟****检测方法的*****腺癌治疗SCI二区 直击了解更多选题

已签订领域:医学,电化学题目:气海***********金纳米颗粒的新型****************粘土及其对胃癌********************抗癌SCI二区 直击了解更多选题

已签订领域:医学,电化学题目:基于抗***********GCE纳米***********材料的高性能*******************早期癌症SCI二区 直击了解更多选题

已签订领域:医学,电化学题目:用******电化学生物传感器*****癌症***************SCI二区 直击了解更多选题

已签订领域:医学,电化学题目:基于*****石墨烯纳米****材料的生物传感******用于测定结肠*****生物*****SCI二区 直击了解更多选题

已签订领域:医学,电化学题目:聚合***纳米复合电极*****疏辛酸电化学检测*********SCI二区 直击了解更多选题

已签订领域:医学,电化学题目:利用****酸/**糖**石墨烯纳米复合修饰的电化学*****SCI二区 直击了解更多选题

已签订领域:环境能源,绿色投资题目:环境能源、绿色投资、城市化和环境类方向SCI三区 直击了解更多选题

已签订领域:计算机,英语教学题目:英语教学**人工智能***习SCI 直击了解更多选题

已签订领域:计算机,音乐题目:评价**和音乐形式*学生***影响SCI三区 直击了解更多选题

已签订领域:经济,绿色投资题目:***能源效率***化之间的***SCI三区 直击了解更多选题

已签订领域:经济政策题目:***阐明**印度经济***的关系SCI三区 直击了解更多选题

已签订领域:经济,金融题目:***国家的能源***重***SCI 直击了解更多选题

已签订领域:经济,金融投资题目:***融新之间***直接投资***SCI三区 直击了解更多选题

已签订领域:经济,数学,统计学,管理学题目:非***想重限制下***袭评价***SSCI四区 直击了解更多选题

已签订领域:经济,数字,管理学题目:基干***生产系统***SSCI四区 直击了解更多选题

已签订领域:农业,土壤科学题目:不同***有机覆盖***养分循环SSCI 直击了解更多选题

已签订领域:电力与能源系统,管理题目:pv***氢定价的***随***型稀SSCI,SCI二区 直击了解更多选题

已签订领域:建筑规划,计算机题目:使用***因子分析法***可持续***SCI三区 直击了解更多选题

已签订领域:工程技术,纺织工程,材料科学题目:甘***淀粉酶的提取***退浆中的应用SCI四区 直击了解更多选题

已签订领域:渔业,鱼类生理学题目:饲料***镉毒性的交互***生长***病理学***SCI二区 直击了解更多选题

已签订领域:渔业,鱼类生理学题目:****鱼水源***起的生******SCI三区 直击了解更多选题

已签订领域:金融,环境经济题目:*****预算在能效、绿色***的作用SCI 直击了解更多选题

已签订领域:应用数学/计算物理题目:***非线性库***自相位调制***SCI三区 直击了解更多选题

已签订领域:计算机,医学检测题目:***COVID-19***力***算法***决策SCI三区 直击了解更多选题

已签订领域:计算机,物联网,智慧城市题目:基于***物联网****算法SCI三区 直击了解更多选题

  例(习)题是教材的重要组成部分,这些例(习)题是编者从茫茫题海中经过反复筛选、精心选择出来的,是学生掌握双基的重要来源,也是教师传授知识的纽带,对教学质量大面积的提高、学生智力的发展、思维品质的培养都是至关重要。

  摘要:培养学生思维能力是数学教学的重要目标,如何能实现这一目标.灵活处理认真研究课本的例(习)题,挖掘并掌握其中丰富内涵,是一种行之有效办法,其对培养学生思维发散性、灵活性、深刻性、创造性、广阔性都有很大作用。

  关键词:思维能力,课本例(习)题

  一、引申拓广,培养思维的发散性

  教学中,若对一些典型的例、习题进行变式处理,如改变原题的条件、结论、方法或逆向思维、反例分析等,即可以在演变多解过程中,使得学生在知识及方法的纵横方向分别得以拓广和延伸,培养学生的发散性思维.

  例1数学必修⑷P122第3题证明:对任意a,b,c,d∈R,恒有不等式

  (ac+bd)2≤(a2+b2)(c2+d2)(1)

  先让学生推证,发现他们用比较法、综合法、反证法、放缩法都可以得到证明.此时进一步追问:能否有更新颖的证法呢?

  引导学生抓住“a2+b2”、“c2+d2”、“ac+bd”的结构特征,因此可考虑用构造法证明.

  证法1(向量法)

  构造向量u=(a,b),v=(c,d),u·v=|u||v|cosθ(其中θ为向量u与v夹角)

  则ac+bd=,

  (ac+bd)2=(a2+b2)(c2+d2)cos2θ

  ≤(a2+b2)(c2+d2)

  证法2(构造三角形)利用“三角形的两边之和大于第三边”(上图中OBCA为平行四边形)

  由|OA|+|OB|>|AB|及|OA|+|OB|>|OC|,不等式⑴迅速得证.

  由解法一不少学生都能发现a与b,c与d可交换位置.

  [变1]求证:(a2+b2)(c2+d2)≥(ad+bc)2⑵

  [变2]⑴式两边开方可否?

  求证:≥|ac+bd|⑶

  [变3]⑶式右边去掉绝对值可否?

  求证:≥ac+bd⑷

  对于⑴式能否有更深刻的变化呢?将不等式⑴字母分别排序,得

  (a12+a22)(b12+b22)≥(a1b1+a2b2)2⑸

  通过分析知道,可以按字母增加的方向演变.

  [变4]设a1、a2、a3、b1、b2、b3∈R,

  求证:(a12+a22+a32)(b12+b22+b32)

  ≥(a1b1+a2b2+a3b3)2⑹

  此时,利用学生的连续思维所产生的思维惯性,教师因势利导,把问题推广。

  推广设ai,bi∈R(i=1,2……n),则

  (a12+a22+……+an2)(b12+b22+……+bn2)

  ≥(a1b1+a2b2+……+anbn)2

  (当且仅当ai=kbi时,取“=”号)

  这是一个重要的定理,叫柯西不等式.不等式⑸、⑹即柯西不等式当n=2和n=3时的特例。

  如此层层推进,使结论更加完美,更具有普遍性.

  上述对原题从不同角度进行演变和多解,这样从一题多变到一题多解,使知识横向联系,纵向深入,拓宽了学生的思路,培养了学生的发散思维.

  二、融会贯通,培养思维的灵活性

  数学中有很多知识是相互联系的,现行新教材特别注意用联系的观点处理问题,课本中例、习题为我们提供了充足的素材和广阔的空间.因此,在教学中充分利用课本例、习题之间相互联系、互相作用、互相影响这一规律,引导学生串通教材,做到融会贯通,开阔学生的视野,增强学生思维的灵活性。

  如研究空间面面关系,线面关系,线线关系时经常要用到转化思想方法来解题,通常有关线面平行、垂直的问题可转化为线线平行、垂直的问题,而有关面面平行、垂直的问题可转化为线面平行、垂直的问题。

  三、揭示规律,培养思维的深刻性

  有些例、习题蕴含着解题思路或方法上的规律性,教师要有意识地引导学生去分析、归纳、挖掘、提炼,以总结出这些规律,并使学生深刻领会,牢固掌握,能用于解类似的问题,这有利于提高学生思维品质的深刻性。

  例3数学必修⑸练习:

  等差数列{an}的前n项和是Sn=5n2+3n,求它的前3项,并求它的通项公式.

  多数学生解为:∵S1=a1=8,S2=a1+a2=26

  ∴a2=S2-a1=18,d=a2-a1=10,a3=a2+d=28,

  ∴an=10n-2,教学不应就此结束,可继续设问:“若等差数列这个条件去掉,应该怎样求an?”经过总结归纳,可以发现:

  ∵Sn=a1+a2+……+anSn-1=a1+a2+……+an-1,

  ∴an=Sn-Sn-1,这实际上就得到了有价值的通法了,即:凡是已知Sn,抓住Sn与an的关系an=

  an学生掌握了此规律,以后处理类似问题就不费周折了。

  再进一步推广、深化例3:

  Sn是数列{an}的前n项的和,若对任何自然数n,

  Sn=an2+bn(a、b∈R且ab≠0)可以证明数列{an}是公差为2a的等差数列.再进一步追问,若Sn=an2+c(c≠0),数列{an}是等差数列吗?为什么?

  如此层层深入思考,分析归纳,不断深化,有效地训练和培养了学生思维的深刻性。

  四、标新立异,培养思维的创造性

  例、习题教学中,在学生掌握基本方法的同时,应有意识地创设新活的思维情境,激励学生不依常规、不受教材与教师传授的方法的束缚,引导学生多角度、全方位地思考问题,锻炼学生思维创造的目的。

  五、联想转化,培养思维的广阔性

  数学是一个具有内在联系的有机整体,各不同分支,不同部分,都是相互联系、相互渗透的,解题方法、解题思路更是如此,因而,在课本例、习题的教学中应有意识地教给学生类比、联想、转化的方法,以提高学生分析问题、解决问题的能力,促进知识的正向迁移,培养思维的广阔性。

  综上所述,课本是教学之本,深挖教材的潜力,充分发挥教材的自身作用,处理好课本例、习题的教学十分重要.立足课本,对课本典型例、习题进行演变、探究、引申、拓广、应用,由点到面,由题及类,解剖一例,带活一串,注意数学思想方法的渗透,这样教学,深化了基础知识,培养了思维品质,发展了思维能力,这正是我们所要追求的目标。



月期刊平台服务过的文章录用时间为1-3个月,依据20年经验,经月期刊专家预审通过后的文章,投稿通过率100%以上!
  • 职称晋升申请书范本2篇

    2025-02-22
    撰写职称晋升申请书时,您需要清晰、专业地展示您的工作成就、专业能力以及对职位提升的渴望。以下是 职称晋升申请书范本2篇 ,您可以根据实际情况进行调整: 1、医、护人员职称晋升申请书范文1篇 尊敬的领导: 本人于xxxx年毕业于xxxx护理专业,毕业后在医院中心监护
  • 高分子化学sci期刊一览 Q1-Q4都在这里

    2025-02-22
    在化学装爷领域中,高分子化学sci期刊众多,按照JCR分区,从Q1到Q4区都有涵盖,作者可根据单位和论文质量选择合适的期刊投稿。以下是 高分子化学sci期刊一览 Q1-Q4都在这里 ,供大家参考: 1、 CHINESE JOURNAL OF POLYMER SCIENCE JCR:Q2区 IF:4.1 致力于发表高分子
  • 2025年RCCSE期刊目录更新到第几版?第七版

    2025-02-22
    截至2025年2月22日,RCCSE期刊目录已经更新到了第七版 。第七版RCCSE中国学术期刊目录是在2024年12月6日至8日召开的第七届中国期刊质量与发展大会上正式发布的,具体详情如下: 1、RCCSE期刊是什么意思 RCCSE期刊是指被武汉大学中国科学评价研究中心(Research Center
  • 论文二审还会给原来的审稿人吗?接受率多少

    2025-02-22
    二审是论文发表期刊过程中最为严格且重要的环节之一,审稿周期较长,建议作者耐心等待。对于, 论文二审还会给原来的审稿人吗 ? 并没有一个统一的答案,可能是原来的审稿人,也可能是新的审稿人,具体取决于期刊的具体政策和审稿人的可用性。 关于论文二审是否还会送
  • 速看!审稿出版最快的教育学SSCI期刊及选题推荐

    2025-02-21
    在教育学领域,被ssci收录的期刊众多,想要选择审稿出版快的期刊,对于新手作者来说确实很难,而且出版周期长短与论文质量、期刊的影响力等因素有直接的关系。今天在这里为大家汇总整理了部分 审稿出版最快的教育学SSCI期刊及选题 ,供大家参考: 一、审稿出版最快的教
回到顶部