建筑机械新型混凝土横孔空心砌块砌体受压性能研究
所属栏目:建筑施工论文
发布时间:2016-03-17 10:44:43 更新时间:2016-03-17 10:39:41
混凝土是建筑工程中最常见的一种材料,通常讲的混凝土一词是指用水泥作胶凝材料,砂、石作集料;与水(可含外加剂和掺合料)按一定比例配合,经搅拌而得的水泥混凝土,也称普通混凝土,它广泛应用于土木工程。本文是一篇建筑机械投稿的论文范文,主要论述了新型混凝土横孔空心砌块砌体受压性能研究。
摘 要:对砌块混凝土设计强度等级为C25~C45的新型混凝土横孔空心砌块及砌体进行受压试验,研究砌块混凝土抗压强度、砌块抗压强度和砌体抗压强度之间的关系.试验结果表明:砌块初裂荷载约为破坏荷载的84%~90%,砌体初裂荷载约为破坏荷载的80%~94%;砌块混凝土每提高一个强度等级,砌块强度提高13%~23%,砌体强度提高13%~30%,且提高幅度逐渐减小.推导了砌块抗压强度平均值计算公式;《砌体结构设计规范》(GB 50003―2011)建议采用的砌体轴心抗压强度平均值计算公式对新型横孔空心砌块砌体并不适用;提出了新型横孔空心砌块砌体轴心抗压强度平均值建议计算公式.
关键词:横孔空心砌块,抗压强度,抗压强度平均值公式
混凝土小型空心砌块符合可持续发展要求,是一种极具竞争力的墙体材料[1].但混凝土小型空心砌块建筑存在保温隔热性能差、防渗性能差等缺点.针对混凝土小型空心砌块存在的一系列问题,本文提出了一种新型混凝土横孔空心砌块,该砌块保温隔热性能好、自重轻,多用于填充墙.砌块主要由凸肋、顶板、底板和左右侧壁组成.横孔空心砌块现已标准化、定型化、产品化,并编制了构造图集、技术规程、省级工法,提出了制作、施工工艺和质量控制技术.砌块的物理性能、力学性能及墙体抗震性能已经得到了较全面的试验研究[2],但对于横孔空心砌块与砌体的抗压强度计算公式研究较少.本文通过新型混凝土横孔空心砌块和砌体的受压性能试验,研究砌块混凝土抗压强度、砌块抗压强度、砌体抗压强度之间的关系,并对砌块及砌体的抗压强度平均值公式进行了推导.
1 试验概况
1.1 试验用砌块及砌体砌筑方式
试验所用砌块均生产自湖南思为科技开发有限公司,并采用了A和B两种规格的砌块.A类砌块尺寸为295 mm×190 mm×218 mm,B类砌块尺寸为295 mm×100 mm×218 mm.A类砌块结构型式如图1所示.
砌块砌筑前1~2 d进行浇水湿润,清除砌块表面的杂物.砌筑时先在侧壁上方砌筑水泥砂浆,待水泥砂浆稳定不再塌落时再砌筑上一皮砌块,砌筑过程中须保证上皮砌块底板不会与下皮砌块凸肋接触,上下皮砌块通过侧壁和砌筑砂浆传力.
1.2 试件设计与制作
砌块抗压试验参照《混凝土小型空心砌块试验方法》(GB/T 4111―1997)[3]的规定处理试件的坐浆面和铺浆面.所有砌块均在侧壁上方及凸肋处用水泥砂浆找平,且水泥砂浆的抗压强度较高,以保证砂浆不会先于砌块破坏.找平前,首先将钢板放置在平整的地面上,用水平尺找平放稳,再在钢板上涂一层机油,然后均匀铺一层约5 mm厚的水泥砂浆[4],将砌块平稳压入砂浆层中,砌块底部多余的砂浆沿棱边刮去.24 h后,用类似的方法将水泥砂浆填满侧壁上方和凸肋处,水泥砂浆层高出凸肋5 mm.再把涂有机油的玻璃板压在砌块的砂浆层上,用水平尺找平后,在室内自然环境下养护.
3皮砌块高的砌体试件可反映墙体的实际受力状态[5],《砌体基本力学性能试验方法标准》(GB/T 50129―2011)[6]规定混凝土砌块砌体的高厚比β宜介于3~5之间,试件宽度为1.5~2倍的块体长度.因此,综合考虑以上因素,A类砌体4皮砌筑,β约为4.5.B类砌体3皮砌筑,β约为6.试件长度为1.5倍的砌块长度加灰缝砂浆的厚度.试件设计如图2所示.砌体试件拟采用2种不同强度的水泥砂浆砌筑.试验总体方案设计情况见表1.
1.3 试验加载方法
砌块受压试验采用液压压力试验机加载.砌块置于承压板上,用橡胶皮垫覆盖砌块找平砂浆上表面,使砌块轴线与承压板压力中心重合,缓慢均匀加载,加载速率统一为0.5 kN/s,试验机指针突然大幅度回退时标志着砌块破坏,记录最大破坏荷载.
砌体受压试验参照《砌体基本力学性能试验方法标准》(GB/T 50129―2011)[6]的规定设计加载方案.仪器全部安装完毕后,在预估破坏荷载值的5%~20%内,反复预压3~5次.预压后卸荷并记录初始读数,然后正式加载,每级荷载为预估破坏荷载值的10%,并在1~1.5 min内均匀加完;恒荷1~2 min后施加下一级荷载,施加荷载时不得冲击试件.加荷至预估破坏荷载值的50%后,每级荷载减小至预估破坏荷载值的5%.当试件出现第一条裂缝后,每级荷载恢复至预估破坏荷载值的10%.
2 材性试验
3 试件典型破坏情况与结果
3.1 砌块破坏形态及试验结果
试验表明,A和B两类砌块主要破坏形态相近.如图3所示,裂缝首先出现在凸肋砂浆中部,随着荷载的增加,砌块凸肋与顶板交接内侧出现纵向裂缝,随后底板也出现纵向裂缝.顶板和底板处的纵向裂缝会向砌块中部发展,侧壁较少出现裂缝.随着裂缝的逐渐开展,最终因凸肋与顶板交接处竖向裂缝的加宽及纵向裂缝的贯通致使砌块破坏,破坏耗时较少,裂缝少且集中,表现出明显的脆性.砌块出现第一条裂缝到承载力全部丧失,时间较短,初裂荷载约为破坏荷载的84%~90%.
试验结果表明,横孔空心砌块的抗压强度随砌块混凝土强度的提高而提高.砌块混凝土材料设计强度等级为C25~C45时,混凝土每提高一个强度等级砌块强度提高13%~23%,且随砌块混凝土抗压强度的提高,砌块抗压强度提高幅度呈下降趋势.砌块受压试验结果见表4和表5,表中F为初裂荷载,P为破坏荷载,A为砌块毛截面面积,f.b为砌块抗压强度,f.1为砌块抗压强度平均值.
3.2 砌体受力过程及主要试验结果
新型混凝土横孔空心砌块砌体破坏形态如图4所示.试件破坏过程第一阶段:从加载至出现第一条裂缝.这一阶段砌体的荷载应变曲线大致呈线性关系,砌体处于弹性工作状态.一般第一条裂缝出现在顶皮砌块凸肋与顶板交角处,初裂荷载约为破坏荷载的80%~94%.第二阶段:裂缝扩展阶段.砌体出现第一条裂缝后,随着压力增大,竖向砂浆裂缝向 上下方向延伸,同时第二批裂缝出现在顶皮砌块底板与侧壁交角处.伴随着吱吱声,砌体处于弹塑性阶段.第三阶段:压力增加至砌体破坏.随着荷载缓慢增加,第一批裂缝贯通顶皮砌块,底皮砌块延伸较少,基本无裂缝;而第二批裂缝沿砌体纵向延伸,致使顶底板与侧壁断开,这是导致砌体破坏的主要原因.A类砌体相比B类砌体,脆性更显著.砌体应力应变曲线如图5所示.砌体受压结果见表6和表7,表中f为砌体轴心抗压强度,f.m为砌体轴心抗压强度平均值.经计算,砌块混凝土材料每提高一个强度等级砌体强度提高13%~30%,且砌块混凝土强度越高,提高幅度越小.
4 砌块抗压强度公式推导
广西、四川、广州等有关建工、建材科研单位对不同抗压强度的混凝土试件同原材料配置的混凝土小型空心砌块进行了995个试件的对比试验,按照数理统计的方法求得了小砌块空洞率R.k. /R的关系式[9]:
7 结 论
1)砌块受压试验表明,砌块混凝土材料设计强度等级为C25~C45时,砌块初裂荷载约为破坏荷载的84%~90%.混凝土材料每提高一个强度等级砌块强度提高13%~23%,且随砌块混凝土强度的提高,砌块强度提高幅度呈下降趋势.
2)砌体受压试验表明,砌块混凝土材料设计强度等级为C25~C45且采用文中所示2种强度的水泥砂浆砌筑砌体时,砌体初裂荷载约为破坏荷载的80%~94%.砌块混凝土材料每提高一个强度等级砌体强度提高13%~30%,且砌块混凝土强度越高,提高幅度越小.
3)通过对砌块受压试验数据进行统计分析,提出了新型混凝土横孔空心砌块抗压强度平均值建议计算公式.
4)按规范公式计算横孔空心砌块砌体抗压强度时误差较大,A和B两类砌块砌体试验值分别为规范计算值的0.522和0.558倍,误差较大且偏于不安全,因此规范公式并不适用于横孔空心砌块砌体抗压强度的计算.
5)通过对规范公式进行改进,提出了横孔空心砌块砌体抗压强度平均值建议计算公式.但由于试验场地和时间的限制,且砌体受压试验数据具有一定的离散性,砌体受压强度平均值建议计算公式仍需进一步验证.
参考文献
[1] 万智,黄靓,刘燕,等.灌孔N式砌块砌体抗压强度理论研究\[J\]. 湖南大学学报:自然科学版, 2011, 38(4): 20-24.
WAN Zhi, HUANG Liang, LIU Yan, et al. Research on the compressive behaviors of grouted N-type block masonry\[J\]. Journal of Hunan University: Natural Sciences, 2011, 38(4): 20-24.(In Chinese)
[2] 蒋文.新型混凝土横孔空心砌块砌体有限元分析与抗压试验研究\[D\].长沙:湖南大学土木工程学院,2011:7-8.
JANG Wen. FEM analysis and experimental study on compressive performance of new horizontal-hole hollow concrete block masonry\[D\]. Changsha: College of Civil Engineering, Hunan University, 2011: 7-8. (In Chinese)
[3] GB/T 4111-1997混凝土小型空心砌块试验方法\[S\]. 北京:中国标准出版社, 1997:1-4.
GB/T 4111-1997 Test methods for the small concrete hollow block\[S\]. Beijing: China Standards Press, 1997:1-4. (In Chinese)
[4] 贺可可.新型横孔空心砌块砌体局部受压试验研究及有限元分析\[D\].长沙:湖南大学土木工程学院,2012:11-12.
HE Ke-ke. Experimental study and FEM analysis of new horizontal-hole hollow block masonry on local compression\[D\]. Changsha: College of Civil Engineering, Hunan University, 2012:11-12. (In Chinese)
[5] DRYSDALE R G, HAMID A A. Behavior of concrete block masonry under axial compression\[J\]. ACI Stuctural Journal, 1979,76(6):707-722.
[6] GB/T 50129―2011 砌体基本力学性能试验方法标准\[S\]. 北京:中国建筑工业出版社,2011:7-10.
GB/T 50129―2011 Standard for test method of basic mechanics properties of masonry\[S\]. Beijing: China Architecture & Building Press, 2011:7-10. (In Chinese)
优秀建筑类期刊推荐:《建筑机械(上半月)》办刊宗旨:面向建设施工和建筑工程机械行业,构筑市场、技术和产品信息交流平台,探析成功企业管理运作模式,推动新产品、新技术、新工法、新思维的研究和应用,促进建设施工和建筑工程机械行业发展。栏目设置(上半月刊):独家策划独立、独到、独家,理性解析宏观经济政策,独家视角剖析行业热点。本刊特稿对行业普遍关注的热点问题进行深入分析与探讨,并预测行业发展走势。论坛对有争议的热点话题,由专家精辟论述,智慧火花、激情碰撞。