JOURNAL OF ALGEBRA
期刊信息导读
- JOURNAL OF ALGEBRA基本信息
- JOURNAL OF ALGEBRA中科院SCI期刊分区
- 历年JOURNAL OF ALGEBRA影响因子趋势图
- JOURNAL OF ALGEBRA期刊英文简介
- JOURNAL OF ALGEBRA期刊中文简介
JOURNAL OF ALGEBRA基本信息
简称:J ALGEBRA
SCI类别:SCI/SCIE
是否OA开放访问:No
出版地:UNITED STATES
出版周期:Semimonthly
涉及的研究方向:数学-数学
通讯方式:ACADEMIC PRESS INC ELSEVIER SCIENCE, 525 B ST, STE 1900, SAN DIEGO, USA, CA, 92101-4495
官方网站:http://www.journals.elsevier.com/journal-of-algebra/
投稿网址:http://ees.elsevier.com/jalgebra/default.asp?acw=1
审稿速度:较快,2-4周
平均录用比例:容易
PMC链接:http://www.ncbi.nlm.nih.gov/nlmcatalog?term=0021-8693%5BISSN%5D
JOURNAL OF ALGEBRA期刊英文简介
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.The Computational Algebra SectionThe Computational Algebra section has been introduced to provide an appropriate forum for contributions which make use of computer calculations and to broaden the scope of the Journal.The following papers are particularly welcome in the Computational Algebra section of the Journal of Algebra:? Results obtained by computer calculations - to be suitable for publication such results must represent a major advance of mathematics. It is not sufficient to extend previous computations by means of higher computer power. Rather the contribution has to exhibit new methods and mathematical results to be accepted.? Classifications of specific algebraic structures (in form of tables, if appropriate), which are not easily obtained and are useful to the algebraic community.? Description and outcome of experiments, to put forward new conjectures, to support existing conjectures, or to give counter examples to existing conjectures.? Papers emphasizing the constructive aspect of algebra, such as description and analysis of new algorithms (not program listings, nor, in the first instance, discussions of software development issues), improvements and extensions of existing algorithms, description of computational methods which are not algorithms in the strict sense (since, e.g., they need not terminate).? Interactions between algebra and computer science, such as automatic structures, word problems and other decision problems in groups and semigroups, preferably, but not necessarily, with an emphasis on practicality, implementations, and performance of the related algorithms.? Contributions are welcome from all areas of algebra, including algebraic geometry or algebraic number theory, if the emphasis is on the algebraic aspects.Contributions describing applications of algebraic results or methods, for example in coding theory, cryptography, or the algebraic theory of differential equations are highly welcome. An important general criterion for the publication of a paper in the Computational Algebra section is its emphasis on the constructive aspects.This journal has an Open Archive. All published items, including research articles, have unrestricted access and will remain permanently free to read and download 48 months after publication. All papers in the Archive are subject to Elsevier's user license.
JOURNAL OF ALGEBRA期刊中文简介
《代数杂志》是一份领先的国际期刊,发表的论文显示了在代数和相关计算方面的高质量研究成果。只有最好和最有趣的论文才会被考虑发表在杂志上。考虑到这一点,重要的是,这一贡献应产生实质性的结果,对实地产生持久的影响。该杂志还在寻找能够提供创新技术的工作,为未来的研究提供有希望的结果。计算代数部分计算代数部分已被引入,以提供一个适当的论坛,供利用计算机计算作出贡献,并扩大该期刊的范围。在《代数杂志》的计算代数部分,下列论文特别受欢迎:?通过计算机计算得到的结果——要适合发表这些结果,必须代表数学的一大进步。用更高的计算机能力来扩展以前的计算是不够的。相反,贡献必须展示新的方法和数学结果才能被接受。?特定代数结构的分类(如果合适,以表的形式),这些结构不容易获得,并且对代数社区有用。?对实验的描述和结果,提出新的猜想,支持现有猜想,或者对现有猜想给出反例。?论文强调代数建设性的一面,如描述和分析的新算法(不是程序清单,也不是,在第一个实例,讨论软件开发的问题),改进和扩展现有的算法,计算方法的描述并不是严格意义上的算法(例如,他们不需要终止)。?代数与计算机科学之间的交互,如自动结构、字词问题以及组和半组中的其他决策问题,最好,但不一定,强调相关算法的实用性、实现和性能。?欢迎来自代数的所有领域的贡献,包括代数几何或代数数论,如果重点是代数方面。描述代数结果或方法的应用的贡献,例如在编码理论,密码学,或微分方程的代数理论是非常受欢迎的。在计算代数部分发表论文的一个重要的通用标准是它对建设性方面的强调。这本杂志有一个开放的档案。所有已发表的项目,包括研究论文,都可以无限制地访问,并在发表48个月后永久免费阅读和下载。存档中的所有论文均受爱思唯尔用户许可的约束。
中科院SCI期刊分区:JOURNAL OF ALGEBRA分区
大类学科 | 小类学科 | Top期刊 | 综述期刊 | ||
---|---|---|---|---|---|
数学 4区 |
|
否 | 否 |
JOURNAL OF ALGEBRA影响因子