JOURNAL OF APPROXIMATION THEORY
期刊信息导读
- JOURNAL OF APPROXIMATION THEORY基本信息
- JOURNAL OF APPROXIMATION THEORY中科院SCI期刊分区
- 历年JOURNAL OF APPROXIMATION THEORY影响因子趋势图
- JOURNAL OF APPROXIMATION THEORY期刊英文简介
- JOURNAL OF APPROXIMATION THEORY期刊中文简介
JOURNAL OF APPROXIMATION THEORY基本信息
简称:J APPROX THEORY
中文名称:近似理论杂志
研究方向:数学
2018-2019最新影响因子:1.022
SCI类别:SCI/SCIE
是否OA开放访问:No
出版地:UNITED STATES
出版周期:Monthly
年文章数:63
涉及的研究方向:数学-数学
通讯方式:ACADEMIC PRESS INC ELSEVIER SCIENCE, 525 B ST, STE 1900, SAN DIEGO, USA, CA, 92101-4495
官方网站:http://www.journals.elsevier.com/journal-of-approximation-theory/
投稿网址:http://ees.elsevier.com/jat/default.asp?acw=1
审稿速度:较慢,6-12周
平均录用比例:容易
PMC链接:http://www.ncbi.nlm.nih.gov/nlmcatalog?term=0021-9045%5BISSN%5D
JOURNAL OF APPROXIMATION THEORY期刊英文简介
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:? Classical approximation ? Abstract approximation ? Constructive approximation ? Degree of approximation ? Fourier expansions ? Interpolation of operators ? General orthogonal systems ? Interpolation and quadratures ? Multivariate approximation ? Orthogonal polynomials ? Padé approximation ? Rational approximation ? Spline functions of one and several variables ? Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds ? Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) ? Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
JOURNAL OF APPROXIMATION THEORY期刊中文简介
近似理论杂志致力于纯粹和应用近似理论及相关领域的进步。这些领域包括:?经典近似?抽象近似?建设性近似?近似度?傅里叶扩展?运营商的插值?一般正交系统?插值和正交?多变量近似?正交多项式?Padé近似?有理近似?一个和多个变量的样条函数?在欧几里德空间,球体和更一般的流形上通过径向基函数逼近?与经典谐波分析,正交多项式和近似理论有强连接的特殊函数(与组合,数论,表示理论,生成函数,形式理论等相反)?实函数或复函数理论,函数理论,差分或微分方程,函数空间或谐波分析的近似理论方面
中科院SCI期刊分区:
JOURNAL OF APPROXIMATION THEORY影响因子
获取相关优质资源获取2023中科院分区