Journal of Dynamics and Differential Equations
期刊信息导读
- Journal of Dynamics and Differential Equations基本信息
- Journal of Dynamics and Differential Equations中科院SCI期刊分区
- 历年Journal of Dynamics and Differential Equations影响因子趋势图
- Journal of Dynamics and Differential Equations期刊英文简介
- Journal of Dynamics and Differential Equations期刊中文简介
Journal of Dynamics and Differential Equations基本信息
简称:J DYN DIFFER EQU
中文名称:动力学和微分方程杂志
研究方向:数学
2018-2019最新影响因子:1.475
2022年6月28日更新影响因子:1.819
SCI类别:SCI/SCIE
是否OA开放访问:No
出版地:UNITED STATES
出版周期:Quarterly
年文章数:66
涉及的研究方向:数学-数学
通讯方式:SPRINGER, 233 SPRING ST, NEW YORK, USA, NY, 10013
官方网站:http://link.springer.com/journal/10884
审稿速度:>12周,或约稿
平均录用比例:容易
PMC链接:http://www.ncbi.nlm.nih.gov/nlmcatalog?term=1040-7294%5BISSN%5D
Journal of Dynamics and Differential Equations期刊英文简介
The Journal of Dynamics and Differential Equations answers the research needs of scholars of dynamical systems. It presents papers on the theory of the dynamics of differential equations (ordinary differential equations, partial differential equations, stochastic differential equations, and functional differential equations) and their discrete analogs. The journal also publishes papers dealing with computational results and applications in biology, engineering, physics, and the other sciences, as well as papers in other areas of mathematics which have direct bearing on the dynamics of differential equations.The dynamical issues treated in this journal cover all of the classical topics, including: attractors, bifurcation theory, connection theory, dichotomies, ergodic theory, finite and infinite dimensional systems, index theory, invariant manifolds, Lyapunov exponents, normal forms, singular perturbations, stability theory, symmetries, topological methods, and transversality. In addition, the journal covers new and emerging areas. Special emphas
Journal of Dynamics and Differential Equations期刊中文简介
《动力学与微分方程》杂志满足了动力学系统学者的研究需要。介绍了微分方程动力学理论(常微分方程、偏微分方程、随机微分方程、泛函微分方程)及其离散类比。该杂志也发表论文处理计算结果和应用在生物学,工程学,物理学和其他科学,以及在数学的其他领域的论文,有直接关系到微分方程的动力学。本期刊讨论的动力学问题涵盖了所有的经典主题,包括:吸引子、分叉理论、连接理论、二分法、遍历理论、有限和无限维系统、指数理论、不变流形、李亚普诺夫指数、正规形式、奇异摄动、稳定性理论、对称性、拓扑方法和截线。此外,该杂志还涵盖了新兴领域。特别强调
中科院SCI期刊分区:
Journal of Dynamics and Differential Equations影响因子
获取相关优质资源获取2023中科院分区