Journal of Hyperbolic Differential Equations
期刊信息导读
- Journal of Hyperbolic Differential Equations基本信息
- Journal of Hyperbolic Differential Equations中科院SCI期刊分区
- 历年Journal of Hyperbolic Differential Equations影响因子趋势图
- Journal of Hyperbolic Differential Equations期刊英文简介
- Journal of Hyperbolic Differential Equations期刊中文简介
Journal of Hyperbolic Differential Equations基本信息
简称:J HYPERBOL DIFFER EQ
研究方向:数学
2018-2019最新影响因子:0.426
2022年6月28日更新影响因子:0.635
SCI类别:SCIE
是否OA开放访问:No
出版地:UNITED STATES
出版周期:Quarterly
年文章数:24
涉及的研究方向:数学-应用数学
通讯方式:WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE, SINGAPORE, 596224
官方网站:http://www.worldscientific.com/worldscinet/jhde
投稿网址:http://www.worldscientific.com/page/jhde/submission-guidelines
审稿速度:平均6月
平均录用比例:约50%
PMC链接:http://www.ncbi.nlm.nih.gov/nlmcatalog?term=0219-8916%5BISSN%5D
Journal of Hyperbolic Differential Equations期刊英文简介
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.The Journal aims to provide a forum for the community of researchers who are currently working in the very active area of nonlinear hyperbolic problems, and will also serve as a source of information for the users of such research.There is no a priori limitation on the length of submitted manuscripts, and even long papers may be published.
Journal of Hyperbolic Differential Equations期刊中文简介
该期刊发表关于非线性双曲线问题和相关主题的原始研究论文,数学和/或物理兴趣。具体而言,它邀请了关于双曲守恒定律和数学物理中出现的双曲偏微分方程的理论和数值分析的论文。期刊欢迎以下方面的贡献:非线性双曲守恒定律系统理论,解决了一个或多个空间维度中解的适定性和定性行为问题。数学物理的双曲微分方程,如广义相对论的爱因斯坦方程,狄拉克方程,麦克斯韦方程,相对论流体模型等。洛伦兹几何,特别是满足爱因斯坦方程的时空的全局几何和因果理论方面。连续体物理中出现的非线性双曲系统,如:流体动力学的双曲线模型,跨音速流的混合模型等。由有限速度现象主导(但不是唯一驱动)的一般问题,例如双曲线系统的耗散和色散扰动,以及来自统计力学和与流体动力学方程的推导相关的其他概率模型的模型。双曲型方程数值方法的收敛性分析:有限差分格式,有限体积格式等。该期刊旨在为目前正在非常活跃的非线性双曲线问题领域工作的研究人员提供一个论坛,并且还将作为此类研究用户的信息来源。提交稿件的长度没有先验限制,甚至可能会发表长篇论文。
中科院SCI期刊分区:Journal of Hyperbolic Differential Equations分区
大类学科 |
小类学科 |
Top期刊 |
综述期刊 |
数学 4区 |
MATHEMATICS, APPLIED 应用数学 |
4区 |
PHYSICS, MATHEMATICAL 物理:数学物理 |
4区 |
|
否 |
否 |
Journal of Hyperbolic Differential Equations影响因子
获取相关优质资源获取2023中科院分区