JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS
期刊信息导读
- JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS基本信息
- JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS中科院SCI期刊分区
- 历年JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS影响因子趋势图
- JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS期刊英文简介
- JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS期刊中文简介
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS基本信息
简称:J KNOT THEOR RAMIF
研究方向:数学
2018-2019最新影响因子:0.461
2022年6月28日更新影响因子:0.456
SCI类别:SCI/SCIE
是否OA开放访问:No
出版地:SINGAPORE
出版周期:Monthly
年文章数:148
涉及的研究方向:数学-数学
通讯方式:WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE, SINGAPORE, 596224
官方网站:http://www.worldscientific.com/worldscinet/jktr
投稿网址:http://www.editorialmanager.com/jktr/login.asp
审稿速度:偏慢,4-8周
平均录用比例:容易
PMC链接:http://www.ncbi.nlm.nih.gov/nlmcatalog?term=0218-2165%5BISSN%5D
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS期刊英文简介
This Journal is intended as a forum for new developments in knot theory, particularly developments that create connections between knot theory and other aspects of mathematics and natural science. Our stance is interdisciplinary due to the nature of the subject. Knot theory as a core mathematical discipline is subject to many forms of generalization (virtual knots and links, higher-dimensional knots, knots and links in other manifolds, non-spherical knots, recursive systems analogous to knotting). Knots live in a wider mathematical framework (classification of three and higher dimensional manifolds, statistical mechanics and quantum theory, quantum groups, combinatorics of Gauss codes, combinatorics, algorithms and computational complexity, category theory and categorification of topological and algebraic structures, algebraic topology, topological quantum field theories).Papers that will be published include:new research in the theory of knots and links, and their applications;new research in related fields;tutorial and review papers.With this Journal, we hope to serve well researchers in knot theory and related areas of topology, researchers using knot theory in their work, and scientists interested in becoming informed about current work in the theory of knots and its ramifications.
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS期刊中文简介
本杂志旨在为纽结理论的新发展,特别是在纽结理论与数学和自然科学的其他方面之间建立联系的发展提供一个论坛。由于学科的性质,我们的立场是跨学科的。绳结理论作为一门核心的数学学科,受到许多形式的推广(虚拟绳结和连杆、高维绳结、其它流形中的绳结和连杆、非球面绳结、类似于打结的递归系统)。结点生活在一个更广泛的数学框架中(三维和高维流形分类、统计力学和量子理论、量子群、高斯码组合学、组合学、算法和计算复杂性、拓扑和代数结构的范畴理论和范畴化、代数拓扑、拓扑量子场论)。将发表的论文包括:节点与连杆理论的新研究及其应用相关领域的新研究;教程和复习论文。通过这本杂志,我们希望能很好地服务于结理论和拓扑相关领域的研究人员,研究人员在他们的工作中使用结理论,科学家有兴趣了解当前在结理论及其分支的工作。
中科院SCI期刊分区:JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS分区
大类学科 |
小类学科 |
Top期刊 |
综述期刊 |
数学 4区 |
|
否 |
否 |
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS影响因子
获取相关优质资源获取2023中科院分区