MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY
期刊信息导读
- MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY基本信息
- MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY中科院SCI期刊分区
- 历年MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY影响因子趋势图
- MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY期刊英文简介
- MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY期刊中文简介
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY基本信息
简称:MATH PHYS ANAL GEOM
研究方向:数学
2018-2019最新影响因子:1.071
2022年6月28日更新影响因子:1.027
SCI类别:SCIE
是否OA开放访问:No
出版地:NETHERLANDS
出版周期:Quarterly
年文章数:30
涉及的研究方向:数学-应用数学
通讯方式:SPRINGER, VAN GODEWIJCKSTRAAT 30, DORDRECHT, NETHERLANDS, 3311 GZ
官方网站:http://link.springer.com/journal/11040
投稿网址:http://www.editorialmanager.com/mpag/
审稿速度:>12周,或约稿
平均录用比例:容易
PMC链接:http://www.ncbi.nlm.nih.gov/nlmcatalog?term=1385-0172%5BISSN%5D
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY期刊英文简介
Aims & Scope MPAG is a peer-reviewed journal that publishes research papers presenting original results on Mathematical topics having strong interactions with Physics, with a specific emphasis on Analysis, Probability and Geometry. Paper length is not “per se” an issue as long as the contents justify that length. The editorial board commits itself to combine the requirements of an accurate and fast refereeing process. A list of topics that are covered in this Journal includes: - classical, quantum and stochastic integrable systems;- classical mechanics and dynamical systems;- combinatorial aspects of statistical physics and quantum field theory;- classical and quantum field theories;- non-commutative geometry and applications to physics;- stochastic processes and random graphs;- classical and quantum statistical mechanics;- random matrix theory;- deformation and geometric quantization;- Lie-algebras and Hopf algebra;- algebraic geometry;- quantum information.
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY期刊中文简介
目标和范围MPAG是一种同行评审的期刊,发表研究论文,展示与物理有很强互动的数学主题的原始结果,特别强调分析、概率和几何。纸张的长度本身并不是问题,只要内容证明其长度是合理的。编辑委员会致力于结合准确和快速的裁判过程的要求。本期刊涵盖的主题包括:-经典、量子和随机可积系统;-经典力学和动力系统;-统计物理和量子场论的组合方面;-经典和量子场论;-非交换几何和物理应用;-随机过程和随机图;-经典和量子统计力学;-随机矩阵理论;-变形和几何量化;-李代数和Hopf代数;-代数几何;——量子信息。
中科院SCI期刊分区:MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY分区
大类学科 |
小类学科 |
Top期刊 |
综述期刊 |
数学 3区 |
MATHEMATICS, APPLIED 应用数学 |
4区 |
PHYSICS, MATHEMATICAL 物理:数学物理 |
4区 |
|
否 |
否 |
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY影响因子
获取相关优质资源获取2023中科院分区