POSITIVITY
期刊信息导读
- POSITIVITY基本信息
- POSITIVITY中科院SCI期刊分区
- 历年POSITIVITY影响因子趋势图
- POSITIVITY期刊英文简介
- POSITIVITY期刊中文简介
POSITIVITY基本信息
简称:POSITIVITY
中文名称:积极性
研究方向:数学
2018-2019最新影响因子:0.833
2022年6月28日更新影响因子:0.853
SCI类别:SCIE
是否OA开放访问:No
出版地:NETHERLANDS
出版周期:Quarterly
创刊年份:1997
年文章数:94
涉及的研究方向:数学-数学
通讯方式:SPRINGER, VAN GODEWIJCKSTRAAT 30, DORDRECHT, NETHERLANDS, 3311 GZ
官方网站:http://link.springer.com/journal/11117
投稿网址:https://www.editorialmanager.com/post/default.aspx
审稿速度:>12周,或约稿
平均录用比例:容易
PMC链接:http://www.ncbi.nlm.nih.gov/nlmcatalog?term=1385-1292%5BISSN%5D
POSITIVITY期刊英文简介
The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome.The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.This includes the following areas.ordered topological vector spaces (including Banach lattices and ordered Banach spaces)positive and order bounded operators (including spectral theory, operator equations, ergodic theory, approximation theory and interpolation theory)Banach spaces (including their geometry, unconditional and symmetric structures, non-commutative function spaces and asymptotic theory)C and other operator algebras (especially non-commutative order theory)geometric and probabilistic aspects of functional analysispartial differential equations (including maximum principles, diffusion, elliptic and parabolic equations; and subsolutions)positive solutions for functional equationspositive semigroupspotential theory and harmonic functionsharmonic analysisvariational analysis and variational inequalitiesoptimization and optimal controlconvex and nonsmooth analysiscomplementarity theorymaximal element principlesmeasure theory (including Boolean algebras and stochastic processes)non-standard analysis and Boolean valued modelsApplications of the above fields to other disciplines and areas
POSITIVITY期刊中文简介
实证研究的目的是为所有分析领域的高质量原创研究及其在其他学科中的应用提供一个出口,这些学科与实证研究的主题有着明确和实质性的联系。具体来说,那些阐明实证在其他学科(包括但不限于经济学、工程学、生命科学、物理学和统计决策理论)中的应用的文章是受欢迎的。实证研究的范围是发表受实证概念影响的数学及其应用领域的原创论文。这包括以下领域。有序拓扑向量空间(包括巴拿赫格和有序巴拿赫空间)正序有界算子(包括谱理论、算子方程、遍历理论、逼近理论和插值理论)巴拿赫空间(包括几何、无条件对称结构、非交换函数空间和渐近理论)C和其他算子代数(特别是非交换序理论)函数分析的几何和概率方面偏微分方程(包括极大原理、扩散、椭圆和抛物线方程;和上)函数方程的正解积极的半群势能理论和调和函数谐波分析变分分析和变分不等式优化与最优控制凸和非光滑分析互补理论最大元素的原则测度理论(包括布尔代数和随机过程)非标准分析和布尔值模型上述领域在其他学科和领域的应用
中科院SCI期刊分区:
大类学科 |
分区 |
小类学科 |
分区 |
Top期刊 |
综述期刊 |
数学 |
3区 |
MATHEMATICS
数学
|
3区
|
否 |
否 |
POSITIVITY影响因子
获取相关优质资源获取2023中科院分区