goback
月期刊咨询网
当前位置:首页>>SCI期刊>>ACM Transactions on Knowledge Discovery from Data>>正文

ACM Transactions on Knowledge Discovery from Data


期刊信息导读

已签订领域:化学工程/制药,医学题目:**作为抗癌剂***催化剂**取代苯丙***SCI四区 直击了解更多选题

已签订领域:环境科学-公共卫生题目:用**电***生物传感器**癌症**SCI二区 直击了解更多选题

已签订领域:环境科学-公共卫生题目:**氧化石墨烯纳米***材料的生物传感器***结肠癌生物**癌胚****SCI二区 直击了解更多选题

已签订领域:环境科学-公共卫生题目:聚合物纳米***a-硫辛酸***在神经炎症***应用***临床分析SCI二区 直击了解更多选题

已签订领域:计算机视觉/遥感/智能驾驶/汽车题目:**深度学习***高分辨率遥感***车辆检***SCI三区 直击了解更多选题

已签订领域:企业管理题目:社会交流***领导***倾向***方向SSCI,SCI三区,二区 直击了解更多选题

已签订领域:企业管理题目:**中小企业社交媒体****可持续绩效***因素探析SSCI,SCI三区,二区 直击了解更多选题

已签订领域:环境科学,公共卫生题目:利用硫氨酸***石墨烯纳米***电化学***传感器实现癌胚抗原***SCI二区 直击了解更多选题

已签订领域:环境科学,公共卫生题目:基于抗***纳米复合***高性能***早起癌症诊断***SCI二区 直击了解更多选题

已签订领域:经济,能源题目:***政治冲突****绿色金融、金融**、气***化***SCI四区 直击了解更多选题

已签订领域:经济,能源题目:冲***中能源不安全对***和环境***SCI四区 直击了解更多选题

已签订领域:教育题目:大学生***社交媒体***成绩影响***SSCI三区 直击了解更多选题

已签订领域:教育题目:巴基斯坦***学习实施的***的**SSCI二区 直击了解更多选题

已签订领域:教育题目:大学生对****下网络教学**思***SSCI二区 直击了解更多选题

已签订领域:教育题目:**教师和学生对影响***医疗**效果的****看法SSCI三区 直击了解更多选题

已签订领域:计量经济学题目:**货币、黄金、**和美国***的波动***相互依赖性:**数据的分析SSCI一区 直击了解更多选题

已签订领域:计量经济学题目:东南亚***内**趋同***中等收入**:新**的***SSCI二区 直击了解更多选题

已签订领域:建筑,历史题目:历史景点在***旅游发***中的***影响**(**研究:**历史***)SSCI,SCI一区 直击了解更多选题

已签订领域:领导力,管理题目:量化**领导对角色绩效***响:**冲突与工作自主性***作用SCI二区 直击了解更多选题

已签订领域:信息技术,教育题目:数字***环境对学生学习成绩***:游戏**和***现实在教育***作用SSCI四区 直击了解更多选题

已签订领域:信息技术,教育题目:信息技术***续决策之间的***:创新***识的**作用SSCI二区 直击了解更多选题

已签订领域:信息技术,教育题目:课程**对大学生***发展的影响:学习习惯和***的***作用SSCI一区 直击了解更多选题

已签订领域:信息技术,教育题目:信息技术***与可持续决策**:高等***学生认知***作用SSCI二区 直击了解更多选题

已签订领域:计算机,英语教学题目:英语****学**与人工智能****学习SCI三区 直击了解更多选题

已签订领域:计算机,音乐题目:评价**和音乐**对学生成绩***的影响SCI三区 直击了解更多选题

已签订领域:人体工程,心理学题目:基于预先处理模型***模式人体工程学***女生肌肉骨骼***预防行为*** 直击了解更多选题

已签订领域:人体工程,心理学题目:制定一个***人体工程学**,以识别、优先考虑***职业压力源的*** 直击了解更多选题

已签订领域:人体工程,心理学题目:多重工作**压力和工作***:***工效学方法的混合方法*** 直击了解更多选题

已签订领域:数学,经济题目:数学模型***结构调整和经济转型****研究 直击了解更多选题

已签订领域:数学,经济题目:***时间**数学模型在***媒体营销**中的应用*** 直击了解更多选题

已签订领域:数学,经济题目:***时间**模型在***物流运**能力***研究 直击了解更多选题

已签订领域:数学,经济题目:碳****经济的数学模型****研究 直击了解更多选题

已签订领域:农村经济题目:农****社区**发展***分**SCI四区 直击了解更多选题

已签订领域:农村经济题目:创业***对乡村****发展的****SCI四区 直击了解更多选题

已签订领域:农村经济题目:农村创业****的空间*****究SCI四区 直击了解更多选题

已签订领域:医学,电化学题目:纳米颗粒*****及其在癌症****和重金属*****检测中的应用SCI三区 直击了解更多选题

已签订领域:医学,电化学题目:基于*****前列腺癌药物氟****检测方法的*****腺癌治疗SCI二区 直击了解更多选题

已签订领域:医学,电化学题目:气海***********金纳米颗粒的新型****************粘土及其对胃癌********************抗癌SCI二区 直击了解更多选题

已签订领域:医学,电化学题目:基于抗***********GCE纳米***********材料的高性能*******************早期癌症SCI二区 直击了解更多选题

已签订领域:医学,电化学题目:用******电化学生物传感器*****癌症***************SCI二区 直击了解更多选题

已签订领域:医学,电化学题目:基于*****石墨烯纳米****材料的生物传感******用于测定结肠*****生物*****SCI二区 直击了解更多选题

已签订领域:医学,电化学题目:聚合***纳米复合电极*****疏辛酸电化学检测*********SCI二区 直击了解更多选题

已签订领域:医学,电化学题目:利用****酸/**糖**石墨烯纳米复合修饰的电化学*****SCI二区 直击了解更多选题

已签订领域:环境能源,绿色投资题目:环境能源、绿色投资、城市化和环境类方向SCI三区 直击了解更多选题

已签订领域:计算机,英语教学题目:英语教学**人工智能***习SCI 直击了解更多选题

已签订领域:计算机,音乐题目:评价**和音乐形式*学生***影响SCI三区 直击了解更多选题

已签订领域:经济,绿色投资题目:***能源效率***化之间的***SCI三区 直击了解更多选题

已签订领域:经济政策题目:***阐明**印度经济***的关系SCI三区 直击了解更多选题

已签订领域:经济,金融题目:***国家的能源***重***SCI 直击了解更多选题

已签订领域:经济,金融投资题目:***融新之间***直接投资***SCI三区 直击了解更多选题

已签订领域:经济,数学,统计学,管理学题目:非***想重限制下***袭评价***SSCI四区 直击了解更多选题

已签订领域:经济,数字,管理学题目:基干***生产系统***SSCI四区 直击了解更多选题

已签订领域:农业,土壤科学题目:不同***有机覆盖***养分循环SSCI 直击了解更多选题

已签订领域:电力与能源系统,管理题目:pv***氢定价的***随***型稀SSCI,SCI二区 直击了解更多选题

已签订领域:建筑规划,计算机题目:使用***因子分析法***可持续***SCI三区 直击了解更多选题

已签订领域:工程技术,纺织工程,材料科学题目:甘***淀粉酶的提取***退浆中的应用SCI四区 直击了解更多选题

已签订领域:渔业,鱼类生理学题目:饲料***镉毒性的交互***生长***病理学***SCI二区 直击了解更多选题

已签订领域:渔业,鱼类生理学题目:****鱼水源***起的生******SCI三区 直击了解更多选题

已签订领域:金融,环境经济题目:*****预算在能效、绿色***的作用SCI 直击了解更多选题

已签订领域:应用数学/计算物理题目:***非线性库***自相位调制***SCI三区 直击了解更多选题

已签订领域:计算机,医学检测题目:***COVID-19***力***算法***决策SCI三区 直击了解更多选题

已签订领域:计算机,物联网,智慧城市题目:基于***物联网****算法SCI三区 直击了解更多选题

  1. ACM Transactions on Knowledge Discovery from Data基本信息
  2. ACM Transactions on Knowledge Discovery from Data中科院SCI期刊分区
  3. 历年ACM Transactions on Knowledge Discovery from Data影响因子趋势图
  4. ACM Transactions on Knowledge Discovery from Data期刊英文简介
  5. ACM Transactions on Knowledge Discovery from Data期刊中文简介

ACM Transactions on Knowledge Discovery from Data基本信息


简称:ACM T KNOWL DISCOV D

中文名称:ACM数据知识发现汇刊

研究方向:工程技术

2018-2019最新影响因子:2.538

SCI类别:SCIE

是否OA开放访问:No

出版地:UNITED STATES

创刊年份:2006

年文章数:26

涉及的研究方向:工程技术-计算机:信息系统

官方网站:http://tkdd.acm.org/index.html

投稿网址:http://mc.manuscriptcentral.com/tkdd

审稿速度:约3.0个月

平均录用比例:较易

PMC链接:http://www.ncbi.nlm.nih.gov/nlmcatalog?term=1556-4681%5BISSN%5D




ACM Transactions on Knowledge Discovery from Data期刊英文简介


TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but not limite to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.TKDD welcomes papers that both lay theoretical foundations for data mining, big data and those that provide new insights into the design and implementation of large-scale data mining systems and tools, data mining interface tools, and data mining tools that integrate with the overall information processing infrastructure. TKDD also accepts papers that describe user and data mining developer and administration experiences and issues in large-scale real-world data mining applications. The emphasis on integration of theory and practice is an attempt to encourage authors of theory papers to consider applicability and/or implementability of the theoretical results, while encouraging authors of systems papers to reflect on the theoretical results that may have been used in building the systems and/or to offer suggestions on issues that may require theoretical treatment.TKDD also solicits focused surveys on topics relevant to TKDD. These should be deep and will sometimes be quite narrow, but should make a contribution to our understanding of an important area or subarea of databases. More general surveys that are intended for a broad-based Computer Science audience or surveys that may influence other areas of computing research should continue to go to ACM Computing Surveys. Brief surveys on recent developments in data mining research are more appropriate for ACM SIGKDD Explorations. TKDD surveys should be educational to the database audience by presenting a relatively well-established body of database research.For additional information on the types of papers TKDD will accept, see Editorial Guidelines.The international Editorial Board is composed of recognized experts in the various subareas of this field, all with a commitment to maintain TKDD as the premier publication in this active field. Papers should be submitted electronically to ACM TKDD manuscript center. The Editorial Board maintains contact with ACM's Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), as well as with other societies, to encourage submittal of advanced and original papers. When appropriate, concise results may be submitted as technical notes; technical comments on earlier publications are welcome as well.The journal appears in the ACM Digital Library and is thus available to the many individual and institutional DL subscribers. TKDD will be also included in the SIGKDD Anthology and SIGKDD Digital Symposium Collection CDROM publications. These disparate media (print, web, CDROM, DVDROM), widely distributed, ensure that TKDD articles are easily available to knowledge discovery and data mining researchers.The existence of TKDD has helped to define the field of knowledge discovery and data mining research. It encompasses the development, formalization, and validation of abstractions and models to describe data mining applications and the design and implementation methods for knowledge discovery and automated analysis of large amount of data.


ACM Transactions on Knowledge Discovery from Data期刊中文简介


TKDD欢迎关于知识发现和各种形式数据分析的全方位研究的论文。这些主题包括但不限于:数据挖掘和大数据分析的可扩展和有效算法、挖掘大脑网络、挖掘数据流、挖掘多媒体数据、挖掘高维数据、挖掘文本、Web和半结构化数据、挖掘时空数据、社区生成的数据挖掘、社会网络分析。分析和图形结构化数据、数据挖掘中的安全和隐私问题、可视化、交互式和在线数据挖掘、数据挖掘的预处理和后处理、健壮和可扩展的统计方法、数据挖掘语言、数据挖掘的基础、KDD框架和过程,以及利用DAT的新型应用程序和基础设施。包括大规模并行处理和云计算平台的挖掘技术。TKDD鼓励在计算机、并行或多处理计算机或新数据设备的大型分布式网络环境中探讨上述主题的论文。TKDD还鼓励那些描述当前数据挖掘技术无法满足的新兴数据挖掘应用程序的论文。TKDD欢迎那些既为数据挖掘、大数据奠定理论基础,又为大规模数据挖掘系统和工具、数据挖掘接口工具和与整体信息处理基础设施集成的数据挖掘工具的设计和实现提供新见解的论文。TKDD还接受描述用户和数据挖掘开发人员以及大型现实数据挖掘应用程序中的管理经验和问题的论文。强调理论与实践的结合是鼓励理论论文的作者考虑理论结果的适用性和/或可实现性,同时鼓励系统论文的作者反思可能用于构建系统和/或就问题提供建议的理论结果。这可能需要理论上的处理。TKDD还要求对与TKDD相关的主题进行重点调查。这些应该很深,有时会很窄,但应该有助于我们理解数据库的一个重要领域或子领域。针对广泛的计算机科学受众或可能影响其他计算研究领域的调查的更一般的调查应继续进行ACM计算调查。对数据挖掘研究最新进展的简要调查更适合于ACM Sigkdd的勘探。TKDD调查应该通过提供一个相对成熟的数据库研究机构来教育数据库的读者。有关TKDD将接受的论文类型的更多信息,请参阅编辑指南。国际编辑委员会由该领域各子领域的公认专家组成,所有这些专家都承诺将TKDD作为该领域的首要出版物。论文应以电子方式提交给ACM TKDD手稿中心。编委会与ACM的知识发现和数据挖掘特别兴趣小组(SIGKDD)以及其他协会保持联系,鼓励提交高级和原始论文。在适当情况下,可以将简明的结果作为技术说明提交;也欢迎对早期出版物的技术评论。该杂志出现在ACM数字图书馆,因此可供许多个人和机构的数字图书馆用户使用。TKDD也将被收录在sigkdd选集和sigkdd数字研讨会的cdrom出版物中。这些分散的媒体(打印、web、cdrom、dvdrom)广泛分布,确保知识发现和数据挖掘研究人员可以轻松获得TKDD文章。TKDD的存在有助于定义知识发现和数据挖掘研究领域。它包括抽象和模型的开发、形式化和验证,以描述数据挖掘应用程序,以及用于知识发现和自动分析大量数据的设计和实现方法。


中科院SCI期刊分区:


ACM Transactions on Knowledge Discovery from Data影响因子


获取相关优质资源获取2023中科院分区


  • 精准匹配论文选择SCI、SSCI、AHCI和EI期刊的方法

    2024-11-23
    要精准匹配SCI、SSCI、AHCI、EI期刊,你需要使用特定的数据库或工具进行查询。以下是一些推荐的步骤和资源: 1、精准匹配SCI、SSCI、AHCI、EI期刊方向 『SSCI』JCR一区,二区,中科院三区,因子2.8,方向:金融贸易方面 『SSCI』JCR一区,中科院二区TOP,因子6.2,方向:
  • 录用率95%的sci期刊汇总

    2024-11-22
    不同学科领域收录率高的sci期刊还是比较多的,这些期刊的审稿周期相对比较短,深受大家的关注和认可。以下是今天对 录用率95%的sci期刊汇总 ,供大家参考: 1、 CANCER BIOTHERAPY AND RADIOPHARMACEUTICALS 中科院:4区 审稿周期:平均3月 学科领域:大类:医学 小类
  • web of science检索到的都是SCI吗

    2024-11-22
    web of science是一个强大的科技文献数据库,类似一个综合数据库合集,收录很多知名国际期刊数据库,如sci、ssci和ahci等。对于, web of science检索到的都是SCI吗 ? 并不都是SCI,还有SSCI、AHCI和ESCI等,因此,SCI只是web of science收录内容的一部分。 Web of Sc
  • sci论文的基本框架和结构

    2024-11-21
    sci论文是科学研究中非常重要的一种文献形式,其严谨的结构和规范的写作格式,可确保论文研究的准确性和可读性。以下是对 sci论文的基本框架和结构 的详细介绍,供大家参考: 1、标题(Title) 简洁明了地概括sci论文研究内容,通常不超过15个单词,以便于读者搜索和理
  • ssci四区给钱就发的期刊推荐

    2024-11-19
    ssci期刊同行评审是非常严格的,想要选择给钱就发的ssci期刊,必须是学术发表正确途径,不然会导致学术不端的风险。以下是为大家介绍的部分 ssci四区给钱就发的期刊 ,供大家参考: 1、 Cornell Hospitality Quarterly IF:3.4 学科领域:大类:管理学 小类:酒店、休
回到顶部