Homology Homotopy and Applications
期刊信息导读
- Homology Homotopy and Applications基本信息
- Homology Homotopy and Applications中科院SCI期刊分区
- 历年Homology Homotopy and Applications影响因子趋势图
- Homology Homotopy and Applications期刊英文简介
- Homology Homotopy and Applications期刊中文简介
Homology Homotopy and Applications基本信息
简称:HOMOL HOMOTOPY APPL
研究方向:数学
2018-2019最新影响因子:0.632
2022年6月28日更新影响因子:0.446
SCI类别:SCIE
是否OA开放访问:No
出版地:UNITED STATES
出版周期:Tri-annual
年文章数:9
涉及的研究方向:数学-数学
通讯方式:INT PRESS BOSTON, INC, PO BOX 43502, SOMERVILLE, USA, MA, 02143
官方网站:http://intlpress.com/site/pub/pages/journals/items/hha/_home/_main/index.html
投稿网址:http://intlpress.com/site/pub/pages/journals/items/hha/_home/submissions/index.html
审稿速度:>12周,或约稿
平均录用比例:容易
PMC链接:http://www.ncbi.nlm.nih.gov/nlmcatalog?term=1532-0073%5BISSN%5D
Homology Homotopy and Applications期刊英文简介
Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
Homology Homotopy and Applications期刊中文简介
同源,同伦和应用是一本评论期刊,在同伦理论和代数拓扑的一般领域发表高质量的论文,以及这一领域的思想和结果的应用。 这意味着最广泛应用的应用,即应用于数学的其他部分,如数论和代数几何,以及数学以外的领域,如计算机科学,物理学和统计学。 同伦理论也可以被广义地解释,包括代数K理论,模型类别,品种的同伦理论等。我们特别鼓励创新论文指出了主题的新应用。
中科院SCI期刊分区:Homology Homotopy and Applications分区
大类学科 |
小类学科 |
Top期刊 |
综述期刊 |
数学 4区 |
MATHEMATICS 数学 |
4区 |
MATHEMATICS, APPLIED 应用数学 |
4区 |
|
否 |
否 |
Homology Homotopy and Applications影响因子
获取相关优质资源获取2023中科院分区